Part Number Hot Search : 
MM1245CD RB715S3 DS1318 11EFS2 KTC4527F F10020 LTPBY 2SC5148
Product Description
Full Text Search
 

To Download IXGR72N60C3D1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? 2009 ixys corporation, all rights reserved symbol test conditions characteristic values (t j = 25 c, unless otherwise specified) min. typ. max. v ge(th) i c = 250 a, v ce = v ge 3.0 5.5 v i ces v ce = v ces , v ge = 0v 300 a t j = 125 c 5 ma i ges v ce = 0v, v ge = 20v 100 na v ce(sat) i c = 50a, v ge = 15v, note 1 2.10 2.70 v t j = 125 c 1.65 v symbol test conditions maximum ratings v ces t j = 25 c to 150 c 600 v v cgr t j = 25 c to 150 c, r ge = 1m 600 v v ges continuous 20 v v gem transient 30 v i c25 t c = 25 c (limited by leads) 75 a i c110 t c = 110 c35a i f110 t c = 110 c36a i cm t c = 25 c, 1ms 400 a i a t c = 25 c50a e as t c = 25 c 500 mj ssoa v ge = 15v, t vj = 125 c, r g = 2 i cm = 150 a (rbsoa) clamped inductive load v ce v ces p c t c = 25 c 200 w t j -55 ... +150 c t jm 150 c t stg -55 ... +150 c v isol 50/60 hz, rms, t = 1minute 2500 v~ i isol < 1ma t = 20 seconds 3000 v~ f c mounting force 20..120/4.5..27 n/lb t l maximum lead temperature for soldering 300 c t sold 1.6mm (0.062 in.) from case for 10s 260 c weight 5 g ds100010a(11/09) v ces = 600v i c110 = 35a v ce(sat) 2.7v t fi(typ) = 55ns IXGR72N60C3D1 genx3 tm 600v igbt with diode high-speed low-vsat pt igbt 40-100 khz switching features z silicon chip on direct-copper bond (dcb) substrate z optimized for low switching losses z square rbsoa z isolated mounting surface z anti-parallel ultra fast diode z avalanche rated z 2500v electrical isolation advantages z high power density z low gate drive requirement applications z high frequency power inverters z ups z motor drives z smps z pfc circuits z battery chargers z welding machines z lamp ballasts isoplus 247 tm g = gate c = collector e = emitter g c e isolated tab free datasheet http:///
ixys reserves the right to change limits, test conditions, and dimensions. IXGR72N60C3D1 symbol test conditions characteristic values (t j = 25 c, unless otherwise specified) min. typ. max. g fs i c = 50a, v ce = 10v, note 1 33 55 s c ies 4780 pf c oes v ce = 25v, v ge = 0v, f = 1mhz 330 pf c res 117 pf q g 175 nc q ge i c = 50a, v ge = 15v, v ce = 0.5 ? v ces 33 nc q gc 72 nc t d(on) 27 ns t ri 37 ns e on 1.03 mj t d(off) 77 130 ns t fi 55 110 ns e off 0.48 0.95 mj t d(on) 26 ns t ri 36 ns e on 1.48 mj t d(off) 120 ns t fi 124 ns e off 0.93 mj r thjc 0.62 c/w r thcs 0.15 c/w ixys mosfets and igbts are covered 4,835,592 4,931,844 5,049,961 5,237,481 6,162,665 6,404,065 b1 6,683,344 6,727,585 7,005,734 b2 7,157,338b2 by one or moreof the following u.s. patents: 4,850,072 5,017,508 5,063,307 5,381,025 6,259,123 b1 6,534,343 6,710,405 b2 6,759,692 7,063,975 b2 4,881,106 5,034,796 5,187,117 5,486,715 6,306,728 b1 6,583,505 6,710,463 6,771,478 b2 7,071,537 isoplus247 (ixgr) outline notes: 1. pulse test, t 300 s, duty cycle, d 2%. 2. switching times & energy losses may increase for higher v ce (clamp), t j or r g . symbol test conditions characteristic values (t j = 25 c, unless otherwise specified) min. typ. max. v f i f = 60a, v ge = 0v, note 1 2.5 v t j = 150 c 1.4 v i rm t j = 100 c 8.3 a t rr 35 ns r thjc 0.85 c /w i f = 60a, v ge = 0v, -di f /dt = 100a/ s, v r = 100v i f = 1a, -di/dt = 200a/ s, v r = 30v reverse diode (fred) inductive load, t j = 25 c i c = 50a, v ge = 15v v ce = 480v, r g = 2 , note 2 inductive load, t j =1 25 c i c = 50a, v ge = 15v v ce = 480v, r g = 2 , note 2 free datasheet http:///
? 2009 ixys corporation, all rights reserved IXGR72N60C3D1 fig. 1. output characteristics @ t j = 25oc 0 10 20 30 40 50 60 70 80 90 100 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 v ce - volts i c - amperes v ge = 15v 13v 11v 7v 5v 9v fig. 2. extended output characteristics @ t j = 25oc 0 50 100 150 200 250 300 350 02468101214 v ce - volts i c - amperes v ge = 15v 13v 7v 9v 11v 5v fig. 3. output characteristics @ t j = 125oc 0 10 20 30 40 50 60 70 80 90 100 0.0 0.4 0.8 1.2 1.6 2.0 2.4 v ce - volts i c - amperes v ge = 15v 13v 11v 7v 5v 9v fig. 4. dependence of v ce(sat) on junctiontemperature 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 0 25 50 75 100 125 150 t j - degrees centigrade v ce(sat) - normalized v ge = 15v i c = 100a i c = 50a i c = 25a fig. 5. collector-to-emitter voltage vs. gate-to-emitter voltage 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6 7 8 9 10 11 12 13 14 15 v ge - volts v ce - volts i c = 100a 50a 25a t j = 25oc fig. 6. input admittance 0 10 20 30 40 50 60 70 80 90 100 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 v ge - volts i c - amperes t j = 125oc 25oc - 40oc free datasheet http:///
ixys reserves the right to change limits, test conditions, and dimensions. IXGR72N60C3D1 fig. 11. maximum transient thermal impedance 0.01 0.10 1.00 0.0001 0.001 0.01 0.1 1 10 pulse width - seconds z (th)jc - oc / w fig. 7. transconductance 0 10 20 30 40 50 60 70 80 90 0 102030405060708090100 i c - amperes g f s - siemens t j = - 40oc 25oc 125oc fig. 10. reverse-bias safe operating area 0 20 40 60 80 100 120 140 160 100 200 300 400 500 600 v ce - volts i c - amperes t j = 125oc , r g = 2 ? dv / dt < 10v / ns fig. 8. gate charge 0 2 4 6 8 10 12 14 16 0 20 40 60 80 100 120 140 160 180 q g - nanocoulombs v ge - volts v ce = 300v i c = 50a i g = 10ma fig. 9. capacitance 10 100 1,000 10,000 0 5 10 15 20 25 30 35 40 v ce - volts capacitance - picofarads f = 1 mhz c ies c oes c res free datasheet http:///
? 2009 ixys corporation, all rights reserved IXGR72N60C3D1 fig. 12. inductive switching energy loss vs. gate resistance 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 r g - ohms e off - millijoules 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 e on - millijoules e off e on - - - - t j = 125oc , v ge = 15v v ce = 480v i c = 100a i c = 50a fig. 17. inductive turn-off switching times vs. junction temperature 40 60 80 100 120 140 160 25 35 45 55 65 75 85 95 105 115 125 t j - degrees centigrade t f - nanoseconds 65 75 85 95 105 115 125 t d(off) - nanoseconds t f t d(off) - - - - r g = 2 ? , v ge = 15v v ce = 480v i c = 100a i c = 50a fig. 15. inductive turn-off switching times vs. gate resistance 90 100 110 120 130 140 150 160 170 180 190 23456789101112131415 r g - ohms t f - nanoseconds 0 50 100 150 200 250 300 350 400 450 500 t d ( off ) - nanoseconds t f t d(off) - - - - t j = 125oc, v ge = 15v v ce = 480v i c = 100a i c = 50a fig. 13. inductive switching energy loss vs. collector current 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 20 30 40 50 60 70 80 90 100 i c - amperes e off - millijoules 0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 e on - millijoules e off e on - - - - r g = 2 ? , v ge = 15v v ce = 480v t j = 125oc, 25oc fig. 14. inductive switching energy loss vs. junction temperature 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 25 35 45 55 65 75 85 95 105 115 125 t j - degrees centigrade e off - millijoules 0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 e on - millijoules e off e on - - - - r g = 2 ? , v ge = 15v v ce = 480v i c = 100a i c = 50a fig. 16. inductive turn-off switching times vs. collector current 20 40 60 80 100 120 140 160 180 20 30 40 50 60 70 80 90 100 i c - amperes t f - nanoseconds 70 80 90 100 110 120 130 140 150 t d ( off ) - nanoseconds t f t d(off) - - - - r g = 2 ? , v ge = 15v v ce = 480v t j = 125oc t j = 25oc free datasheet http:///
ixys reserves the right to change limits, test conditions, and dimensions. IXGR72N60C3D1 ixys ref: g_72n60c3(8d)11-25-09-c fig. 19. inductive turn-on switching times vs. collector current 10 20 30 40 50 60 70 80 90 100 110 20 30 40 50 60 70 80 90 100 i c - amperes t r - nanoseconds 18 20 22 24 26 28 30 32 34 36 38 t d ( on ) - nanoseconds t r t d(on) - - - - r g = 2 ? , v ge = 15v v ce = 480v t j = 25oc, 125oc fig. 20. inductive turn-on switching times vs. junction temperature 20 30 40 50 60 70 80 90 100 110 120 25 35 45 55 65 75 85 95 105 115 125 t j - degrees centigrade t r - nanoseconds 25 26 27 28 29 30 31 32 33 34 35 t d(on) - nanoseconds t r t d(on) - - - - r g = 2 ? , v ge = 15v v ce = 480v i c = 50a i c = 100a fig. 18. inductive turn-on switching times vs. gate resistance 20 40 60 80 100 120 140 160 23456789101112131415 r g - ohms t r - nanoseconds 25 30 35 40 45 50 55 60 t d ( on ) - nanoseconds t r t d(on) - - - - t j = 125oc, v ge = 15v v ce = 480v i c = 50a i c = 100a free datasheet http:///
? 2009 ixys corporation, all rights reserved IXGR72N60C3D1 ixys ref: g_72n60c3(8d)11-25-09-c 200 600 1000 0 400 800 80 90 100 110 120 130 140 0.00001 0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 0 40 80 120 160 0.0 0.5 1.0 1.5 2.0 k f t vj c -di f /dt t s k/w 0 200 400 600 800 1000 0 5 10 15 20 0.0 0.4 0.8 1.2 1.6 v fr di f /dt v 200 600 1000 0 400 800 0 20 40 60 80 100 1000 0 1000 2000 3000 4000 012 0 20 40 60 80 100 120 140 160 i rm q r i f a v f -di f /dt -di f /dt a/ s a v nc a/ s a/ s t rr ns t fr a/ s s dsep 2x61-06a z thjc t vj = 100c v r = 300v t vj = 100c v r = 300v t vj = 150c 100c 25c i f = 120a, 60a, 30a i rm q rm i f = 30a, 60a, 120a t vj = 100c v r = 300v t rr v fr i f = 120a, 60a, 30a t vj = 100c i f = 60a fig. 21. forward current i f versus v f fig. 23. peak reversecurrent i rm versus -di f /dt fig. 22. reverse recorvery charge q r versus -di f /dt fig. 26. peak forward voltage v rm and t rr versus -di f /dt fig. 25. recorvery time t rr versus -di f /dt fig. 24. dynamic paraments q r, i rm versus t vj fig. 27. maximum transient thermal impeadance juection to case (for diode) fig. 27. maximum transient thermal impedance (for diode) 0.001 0.010 0.100 1.000 0.0001 0.001 0.01 0.1 1 10 pulse width - seconds z (th)jc oc / w free datasheet http:///


▲Up To Search▲   

 
Price & Availability of IXGR72N60C3D1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X